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a b s t r a c t 

This paper proposes control strategies to allocate COVID-19 patients to screening facilities, health facili- 

ties, and quarantine facilities for minimizing the spread of the virus by these patients. To calculate the 

transmission rate, we propose a function that accounts for contact rate, duration of the contact, age struc- 

ture of the population, susceptibility to infection, and the number of transmission events per contact. 

Moreover, the COVID-19 cases are divided into different groups according to the severity of their disease 

and are allocated to appropriate health facilities that provide care tailored to their needs. The multi-stage 

fuzzy stochastic programming approach is applied to cope with uncertainty, in which the probability as- 

sociated with nodes of the scenario tree is treated as fuzzy variables. To handle the probabilistic model, 

we use a more flexible measure, Me measure, which allows decision-makers to adopt varying attitudes 

by assigning the optimistic-pessimistic parameter. This measure does not force decision-makers to hold 

extreme views and obtain the interval solution that provides further information in the fuzzy environ- 

ment. We apply the proposed model to the case of Tehran, Iran. The results of this study indicate that 

assigning patients to appropriate medical centers improves the performance of the healthcare system. 

The result analysis highlights the impact of the demographic differences on virus transmission, and the 

older population has a greater influence on virus transmission than other age groups. Besides, the re- 

sults indicate that behavioral changes in the population and their vaccination play a key role in curbing 

COVID-19 transmission. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

"May God bless us and help us to defeat COVID-19 all together." 

In the last decades, a rising number of outbreaks have occurred 

lobally due to climate changes, demographic changes, and habitat 

estruction ( Nkengasong, 2020 ). Ebola virus outbreak (2013), Mid- 

le East respiratory syndrome (MERS) coronavirus outbreak (2012), 

1N1 flu outbreak (2009), and severe acute respiratory syndrome 

SARS) outbreak (2002) are examples of epidemic outbreaks dur- 

ng the last two decades. Such situations disrupt people’s lives 

nd impose heavy social and economic burdens on affected com- 

unities ( Silal, 2021 ). Recently, a novel coronavirus, SARS-CoV-2, 

as caused a new outbreak which quickly changed into a pan- 

emic and has infected a significant number of people around the 

orld ( Nikolopoulos et al. 2021 ). Therefore, due to the rising num- 

er of outbreaks and their impacts on societies, effective responses 
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of COVID-19 pandemic, European Journal of Operational Research, http
hould be prepared to cope with such outbreaks and mitigate their 

ffects. 

This new coronavirus is different from MERS-CoV (coronavirus 

aused MERS) and SARS-CoV (coronavirus causes SARS). It has a 

igher transmission rate and easily spreads between humans. As 

f 6 June 2021, there has been reported 176,0 6 6,274 COVID-19 

C-19) confirmed cases and 3801,301 total deaths ( Worldometers, 

021 ). Notably, the death rate due to C-19 is lower than the other 

nown coronavirus diseases; however, due to high transmissibility, 

he death toll of C-19 has exceeded the death toll of MERS and 

ARS ( WHO, 2020a ). This virus is transmitted mainly through the 

roplets (generated from talking, coughing, and sneezing) when a 

usceptible person is in close contact with an infected person. The 

opulation’s age structure also affects the transmission of the dis- 

ase ( Zhang et al., 2020 ). If the C-19 spread is not appropriately

ontained, a considerable number of people will be infected by this 

irus; accordingly, the healthcare system will be overwhelmed by 

atients and will face a capacity shortage. High economic costs will 

lso be imposed on the communities ( Nagurney, 2021 ). Therefore, 
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ecision-makers (DMs) need to take effective strategies to control 

he outbreak and slow and stop the C-19 transmission. 

The infected patients’ age and their medical conditions affect 

he risk and severity of the C-19 disease; accordingly, the C-19 

irus can cause mild symptoms such as caught and fever to severe 

ymptoms such as shortness of breath and kidney failure. The risk 

f severe disease is also higher for older adults and those with un- 

erlying conditions such as diabetes and cancers ( Liu et al., 2020a , 

020b ). Based on the disease severity, the treatment process of the 

atients and their required care equipment will be different. Pa- 

ients with severe illness may need advanced care in intensive care 

nits (ICUs), oxygen therapy, or ventilation. However, mild cases 

ay not need inpatient care, and they can be isolated in commu- 

ity facilities such as stadiums and hotels ( WHO, 2020b ). The lim- 

ted resources and limited capacities of health facilities (HFs) are 

ritical factors during outbreaks ( Li et al., 2021 ). Therefore, regard- 

ng the community spread of C-19, the limited capacity of HFs, and 

he scarcity of advanced care resources, the patients with different 

llness severity should be assigned to the appropriate facilities that 

rovide medical services tailored to their needs. In this case, pa- 

ients can receive their required care effectively, and the resources 

ill be fairly assigned to patients; thus, C-19 cases can access life- 

aving treatment without compromising public health objectives. 

oreover, after improving the conditions of the C-19 patients, they 

ill be transferred to quarantine facilities (QFs) during their recov- 

ry process. 

Regarding the novelty of the C-19 virus and the enormous 

mount of uncertainty surrounding the healthcare system, infor- 

ation on this disease is not yet fully known. Uncertainties can 

ompromise the reliability of the decisions and deteriorate the per- 

ormance of the healthcare system. During the COVID-19 outbreak 

CVO), the demand for health services is highly uncertain, and han- 

ling this uncertainty will provide optimal allocation decisions. Ac- 

ording to the above, DMs should adopt reliable strategies to cope 

ith uncertainties during outbreaks. 

Several aspects of different outbreaks have been discussed in 

he following review papers. Chowell and Nishiura (2014) reviewed 

he developed mathematical models for containing the Ebola virus 

utbreak in West Africa and explored the impacts of different in- 

erventions on spreading the virus. Dimitrov and Meyers (2014) in- 

estigated the different mathematical models for forecasting the 

pread pattern of infectious diseases. Dasaklis et al. (2012) studied 

he role of logistics operations in containing epidemic outbreaks. 

Several techniques can be used to control, manage, and contain 

isease outbreaks in affected areas. We categorized the relevant 

iterature into two main streams: forecasting disease spread dur- 

ng outbreaks, and allocating and distributing emergency resources 

uring outbreaks. In the first stream, the researchers used mathe- 

atical models and simulation methodologies to estimate the pro- 

ression of the disease during the outbreak and analyzed the im- 

act of control interventions on the spread of the disease. Das et 

l. (2008) proposed a simulation model to mimic the spread of in- 

uenza, in which several features such as demographic, psycholog- 

cal, and epidemiological features were considered in the model. 

andey et al. (2014) presented a stochastic model to estimate the 

ransmission of the Ebola virus before and after adopting control 

easures such as curfew and social distance. In this model, differ- 

nt sources of infection such as community, HF, and funeral were 

aken into account. Hackl and Dubernet (2019) used an agent- 

ased approach to simulate the spread of seasonal influenza dis- 

ase in urban areas by considering the interaction between indi- 

iduals and their behaviors during a day. 

In the second stream, researchers aimed to efficiently allocate 

imited emergency resources among affected people regarding the 

ynamics of the outbreaks. Tanner and Ntaimo (2010) developed 

 fuzzy stochastic programming approach to determine the opti- 
2 
al allocation of vaccines and vaccination policies during an epi- 

emic outbreak under uncertainty in contact rate and vaccine ef- 

cacy. Koyuncu and Erol (2010) used a mathematical model to 

nd the optimal resource allocation during the influenza pandemic 

o minimize the virus transmission and the outbreak’s duration. 

achaniotis et al. (2012) developed a deterministic model to de- 

ermine the optimal allocation of limited resources during the in- 

uenza pandemic in a mass vaccination setting. The concept of 

ob deterioration was incorporated into the problem. He and Liu 

2015) developed a model to manage the distribution of medical 

ervices during infectious disease outbreaks. The psychological and 

hysical effects of the outbreak on the affected people were con- 

idered in the model. Anparasan and Lejeune (2018) provided a 

athematical model to support the response supply chain during 

holera outbreaks in developing countries. 

In some papers, the problem of disease spread and resource al- 

ocations were investigated simultaneously. Tebbens and Thomp- 

on (2009) presented a model to manage the spread of multiple 

nfectious diseases. The limited budget was allocated to eradicate 

he diseases, and policies adopted to control the spread of the dis- 

ases were prioritized due to the budget constraints. Ren et al. 

2013) provided a model to control the propagation of the small- 

ox disease. They aimed to determine the optimal allocation of 

accines regarding the limited resources and the optimal control 

easures concerning transmission intensity in the infected areas. 

armand et al. (2014) developed a mathematical model to esti- 

ate the spread of seasonal influenza. They proposed a two-phase 

odel to distribute the vaccines to infected people. In this study, 

accines are distributed among people considering the uncertainty 

n outbreak dynamics in the first phase. Then, the vaccines are re- 

istributed in the second phase based on the outcomes of the first 

hase. Ekici et al. (2014) investigated the propagation of influenza 

isease, designed a network to allocate resources among infected 

eople, and determined the optimal working hours of distribution 

enters in each period. 

Wanying et al. (2016) provided a response plan for anthrax at- 

acks, in which they assessed the number of infected people and 

istributed antibiotics among HFs based on the patients’ disease 

everity in those HFs. Liu and Zhang (2016) forecasted the un- 

ertain demand for medical resources during an influenza out- 

reak using a transmission model and assigned the medical re- 

ources to HFs based on the predicted demands. They also updated 

heir estimated demands based on the collected data from HFs. 

asaklis et al. (2017) provided a transmission model to estimate 

he progression of the disease during a smallpox attack. Then, they 

roposed a deterministic model to manage the supply of emer- 

ency resources considering healthcare and transportation capac- 

ties. Büyüktahtakın et al. (2018) provided a mathematical model 

or controlling the spread of the Ebola disease and determining the 

ptimal amount of resources in health centers. Liu et al. (2020a , 

020b ) provided an epidemic-logistic model to determine the dy- 

amic of H1N1 influenza, allocate the resources, and determine the 

umber of required isolation wards. 

Uncertainty plays a key role in decision-making processes dur- 

ng outbreaks; however, a few of the reviewed papers, such as 

kici et al. (2014) , Yarmand et al. (2014) , and Tanner and Ntaimo

2010) , considered uncertainty in their presented problems. Ekici 

t al. (2014) incorporated demand uncertainty in their proposed 

odel and used a dynamic approach to handle it. Yarmand et 

l. (2014) considered uncertainty in vaccination outcome, which 

s dealt with a two-stage stochastic approach. Tanner and Ntaimo 

2010) considered uncertainty in disease parameters and used a 

uzzy stochastic approach to cope with it. 

Recently, some researchers have investigated the CVO to pro- 

ide efficient strategies for controlling this outbreak. In the fields 

f the supply chains, Ivanov (2020) investigated the effect of dis- 
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uptions originated from the CVO on the performance of the sup- 

ly chains using simulation methodology under several scenarios 

uch as local and epidemic spread of the virus. Peirlinck et al. 

2020) presented a model to estimate the spread of the C-19 virus 

efore adopting control measures in the affected areas. Govindan 

t al. (2020) proposed a decision support system for managing the 

emand for medical care during CVO. This system categorizes pa- 

ients into several groups based on their ages and medical condi- 

ions, prioritizes them in terms of their conditions, and connects 

hem to appropriate service providers. Mehrotra et al. (2020) pro- 

osed a two-stage stochastic model for managing the allocation of 

entilators during CVO. In this model, different demand scenarios 

re considered, and the idle ventilators can be shared between HFs 

ased on the risk levels. Weissman et al. (2020) proposed a deter- 

inistic model for forecasting the spread of the C-19 disease. The 

odel is used to obtain the optimal decision for allocating emer- 

ency resources and managing hospital capacities effectively. Lin 

t al. (2020) proposed a model to predict the transmission of the 

-19 virus and investigated the effect of preventive measures and 

eople’s behavior on spreading the diseases. 

Manufacturing and distributing vaccines are key challenges dur- 

ng CVO ( Alam et al., 2021 ; Sinha et al., 2021 ). Georgiadis and

eorgiadis (2021) developed a mathematical model for planning 

he C-19 vaccine supply chain while minimizing its cost. A rolling 

orizon algorithm is used to handle the uncertainties in the daily 

lan of vaccination centers. Abbasi et al. (2020) proposed a model 

o determine optimal allocation decisions in an integrated vaccine 

upply chain. The model aims to minimize the risk of infection, 

nd transshipping vaccines between the centers is allowed. An age- 

ased model was presented by Chen et al. (2020) to determine the 

ptimal policy for vaccine allocation that resulted in a minimized 

umber of infected cases and deaths. 

In short, in the reviewed literature, some researchers investi- 

ated the performance of the supply chains during health crises 

rom different aspects; however, the effects of uncertainties on 

upply chains are still to be adequately investigated. Considering 

ncertainty in such situations will result in more reliable decisions. 

oreover, the research on the healthcare supply chain during the 

VO is at a nascent stage, and the resource allocation problems 

uring this uncertain environment need further investigations. As- 

igning patients to the centers providing appropriate medical care 

s also a key factor in allocating emergency resources, which is not 

ppropriately addressed in CVO. This factor prevents the misuse of 

imited resources, and consequently, optimal care will be provided 

or patients on time. In addition to properly allocating resources 

uring CVO, policymakers aim to prevent the further spread of the 

isease. Therefore, reliable estimation of the spread of the C-19 by 

onsidering the transmission characteristic of the virus and adopt- 

ng effective strategies influences the mitigation of the outbreak 

ignificantly. 

In this paper, we propose a mathematical model to allocate the 

-19 cases to health centers so that the spread of the C-19 virus 

y these patients is minimized. The transmission rate of C-19 de- 

ends on the rate of contact between an infected and a susceptible 

ase, the probability of disease transmission, the proportion of in- 

ected cases, and the population’s age structure. Besides, C-19 cases 

re categorized into three groups regarding the severity of their 

llness and their background of the disease; consequently, differ- 

nt types of HFs, including isolation facilities (HF 1 s), general hos- 

itals (HF 2 s), and specialized hospitals (HF 3 s), are considered, and 

atients are assigned to HFs that provide medical services tailored 

o their needs. The number of suspected C-19 cases is considered 

ncertain in order to reflect real-world conditions properly. The 

ncertainty in this parameter affects allocation decisions, trans- 

ission rate, and reliability of the model. To cope with the un- 

ertainty, a multi-stage fuzzy stochastic programming (MFSP) ap- 
3 
roach is applied to the model. In this approach, the decisions can 

e updated as more information is realized over time; as a result, 

he performance of the healthcare system improves. Besides, the 

robability of the nodes of the scenario tree is considered as fuzzy 

arameters. Finally, Me measure is used to handle the fuzzy ob- 

ective function and chance constraints. By applying this measure, 

he lower and upper bounds of the optimal decision are provided; 

onsequently, more information is provided for DMs, and they can 

dopt their attitude to their decisions. The main contributions of 

his study are as follows: 

• Proposing a function for estimating the C-19 transmission rate 

based on the rate of contacts between infected and susceptible 

cases, the probability of the C-19 transmission per contact, and 

the susceptibility of any age group to C-19 infection. 
• Proposing a mathematical model for minimizing the C-19 trans- 

mission rate and determining the optimal assignment of C-19 

cases to health centers by considering their limited capacities. 
• Developing the MFSP approach to deal with uncertainty and 

applying Me measure to handle fuzzy objective function and 

chance constraints. 
• Applying the proposed model to a real case to address the prac- 

ticality of the model. 
• This paper answers the following main questions: 
• How to slow the spread of C-19 disease? 
• How to assign the patients to health centers in order to manage 

the limited capacity efficiently during CVO? 
• How to cope with uncertainties to make reliable decisions dur- 

ing CVO? 

The structure of the paper is as follows. The problem is de- 

cribed in Section 2 , and the mathematical formulation is ex- 

lained in Section 3 . The proposed MFSP approach is presented in 

ection 4 . The case study is addressed in Section 5 , and the results

nd sensitivity analyses are provided in Section 6 . Finally, the con- 

lusion, managerial insights, and future avenues are presented in 

ection 7 . 

. The formal description of the transmission-allocation 

roblem 

This paper presents an emergency supply chain problem to al- 

ocate C-19 patients to the health centers in an efficient manner 

hile the disease transmission minimizes. The schematic view of 

he proposed network is shown in Fig. 1 . First, the suspected C-19 

ases of each region refer to C-19 SFs to be tested. After receiv- 

ng the test results, a proportion of referred cases is released due 

o negative test results. The confirmed cases are assigned to HFs 

egarding the illness severity and background of the disease. We 

ategorize the patients into three types: mildly ill patients (PT 1 s), 

everely ill patients (PT 2 s), and patients with underlying conditions 

PT 3 s). PT 1 s have stable conditions, and they do not need inpatient 

ettings; therefore, they are assigned to HF 1 in which mild cases 

re isolated to prevent the further spread of the virus. 

The unstable patients, PT 2 s and PT 3 s, need inpatient care (such 

s oxygen therapy and ventilation), and therefore, they are trans- 

erred to hospitals. PT 2 s are patients with severe disease, and they 

re allocated to HF 2 s, while PT 3 s (whether with severe or mild 

ymptoms) are transferred to HF 3 s to be treated according to their 

pecial medical conditions. Notably, during CVO, a proportion of 

he capacity of hospitals (HF 2 s and HF 3 s) is dedicated to C-19 pa-

ients, while routine services are provided for non-COVID-19 (non- 

-19) patients simultaneously. The HFs are capacitated, and there- 

ore, if the HF 3 s are overwhelmed with PT 3 s, this type of patient

ill be allocated to HF 2 s (in case of having available capacity). Be- 

ides, the conditions of some of the mild cases who are isolated in 

F s may deteriorate; such patients should be transferred to HF s. 
1 2 
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Fig. 1. The schematic view of the proposed network. 
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urthermore, some of the patients will lose their lives due to the 

igh severity of the illness. After patients recover from disease in 

ach type of HF, they are transferred to QFs for monitoring their 

onditions. Also, this can prevent the spread of the virus since C- 

9 patients may be contagious after they have recovered. Finally, 

hey are discharged from QFs. The proposed model aims to mini- 

ize the C-19 transmission and determine the optimal allocation 

f C-19 patients to health centers. We discuss below how to for- 

ulate the objective function of the proposed model. 

.1. The transmission rate of the C-19 virus 

Each infected case that moves between two nodes (regions, SFs, 

F 1 s, HF 2 s, HF 3 s, and QFs) can transmit the C-19 to the suscepti-

le cases. The rate of C-19 transmission ( η) from C-19 patients to 

usceptible people depends on three factors: 1) the rate of con- 

acts between an infected case with susceptible cases of age group 

when the infected case travels from node n to node n ′ ( C nn ′ g ); 
) the probability of C-19 transmission during a contact between a 

-19 case and a susceptible case of age group g; 3) the proportion 

f infected cases. Thus, we calculate η as follows (see Del Valle et 

l., 2013 ; Keeling & Eames, 2005 ): 

nn ′ gt = 

⎛ 

⎜ ⎝ 

rate of contact between an 

in fected case and susceptible 
cases of age group g in the route 

connecting node n to node n 

′ 

⎞ 

⎟ ⎠ 

×

⎛ 

⎜ ⎝ 

probability of disease 
transmission to a 

susceptible case of age 
group g per contact 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

proportion of 
in fected cases in the 

route connecting 
node n to node n 

′ 

⎞ 

⎟ ⎠ 

= ( C nn ′ g ) ( S g · P g ) 
(

I nn ′ t 
D nn ′ . M nn ′ 

)
(1) 

n which a mechanistically based function is used to obtain the 

ontact rate as follows (see Heesterbeek & Metz, 1993 ; Roberts, 

996 ): 

 nn ′ g = 

2 . T g . D nn ′ g 

1 + 2 . T g . D nn ′ g + 

√ 

1 + 4 . T g . D nn ′ g 
(2) 

In this formulation, the contact rate ( C ) is functions of the av- 

rage duration of contact between a person of age group g and 

ther persons ( T g ), and the density of the population of age g in 

he route ( n , n ′ ) ( D nn ′ g ). The population density of regions is known,

nd the population density of a route depends on the population 
4 
ensity of the regions that the route passes and the portion of the 

oute placed in each region. In other words, the population density 

f the route ( n , n ′ ) is calculated as follows: 

 nn ′ g = 

∑ E 
e =1 D eg . M enn ′ 

M nn ′ 
∀ n � = n 

′ (3) 

n which D eg is the density of population of age g in region e and 

 enn ′ is a portion of the route ( n , n ′ ), which is placed in region e .

esides, M nn ′ is the distance of route ( n , n ′ ). 
The susceptibility to C-19 infection varies by age, and therefore, 

e consider an age-varying susceptibility to the disease. The in- 

estigations show that children have a lower vulnerability to the 

-19 rather than adults, and older adults are the most vulnerable 

roup to the virus ( Davies et al., 2020 ). Therefore, we categorize 

he susceptible population into three age groups, children with 0 

o 14 years old, adults with 15 to 64 years old, and older adults 

ith more than 64 years old. The susceptibility to C-19 infection 

or people of age group g is shown by S g . Furthermore, the prob- 

bility of disease transmission to a susceptible individual of age 

( P g ) is an exponential function of the average duration of con- 

act between an individual of age g and other persons ( T g ) and the 

verage number of transmission events per contact ( N ), as shown 

elow (see Del Valle et al., 2013 ). 

 g = 1 − e −N . T g (4) 

Regarding the above descriptions, the probability of C-19 trans- 

ission in each contact equals S g . P g . 

Finally, the transmission rate depends on the proportion of the 

nfected cases in each route ( n , n ′ ), which is calculated as the ratio

f the number of infected cases transfers between nodes n and n ′ 
n each period ( I nn ′ t ) and the number of people in this route. We 

stimate the number of the people in route ( n , n ′ ) by multiplying

he density of the population in the area that route ( n , n ′ ) passes

 D nn ′ ) and the distance of the route ( n , n ′ ) ( M nn ′ ). In this study, the

umber of infected cases transferred from node n to node n ′ is 

ariable, and it is determined by solving the model. For simplifica- 

ion, we rewrite Formulation (1) as follows: 

nn ′ gt = 

(
C nn ′ g 

)
. ( S g . P g ) . 

(
I nn ′ t 

D nn ′ . M nn ′ 

)
= 

(
C nn ′ g 

)
. ( S g . P g ) . 

(
1 

D nn ′ . M nn ′ 

)
. I nn ′ t = η′ 

nn ′ g . I nn ′ t ∀ n � = n 

′ (5) 

n which η′ 
nn ′ g is a parameter, and I nn ′ t is a decision variable ob- 

ained by solving the presented model in Section 3 . The number 

f susceptible cases of age group g infected by having contact with 
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A

S

 C-19 patient is calculated by ηnn ′ gt = η′ 
nn ′ g . I nn ′ t , and the number 

f infected persons of any age group by an infected case equals 
 G 
g=1 ηnn ′ gt = I nn ′ t 

∑ G 
g=1 η

′ 
nn ′ g = I nn ′ t .η′ 

nn ′ . 
Covid-19 is a novel virus, and there is little information about 

hat. It is evident that C-19 patients can transmit the virus to sus- 

eptible people before their treatment (when they are transferring 

rom regions to SFs ( ηRS ), from SFs to hospitals ( ηSH ), and between

ospitals ( ηHH )). However, some researchers declared that the C- 

9 patients could be contagious after their treatment; therefore, 

e consider that the C-19 transmission occurs after patients are 

ischarged from the hospital; therefore, we consider that the pa- 

ients are transferred to QFs ( ηHQ ) after discharging from hospitals 

o avoid further C-19 transmission. In this study, we also consider 

hat the facilities are capacitated. Therefore, the facilities may re- 

ect some patients due to the lack of capacity. However, these cases 

re infected patients, and they transmit the virus to other people. 

hus, we consider the transmission rate for such patients in each 

egion as follows: 

R 
egt = 

( 

rate of contact between an 

in fected case and susceptible 
cases of age group g in region e 

) 

×

⎛ 

⎜ ⎝ 

probability of disease 
transmission to a 

susceptible case of age 
group g per contact 

⎞ 

⎟ ⎠ 

( 

proportion of 
in fected cases 

in region e 

) 

= (C 

R 
eg )( S g . P g ) 

(
I et 

R e 

)
(6) 

In this formulation, ηR 
egt shows the number of infected cases by 

 C-19 patient whom facilities reject due to lack of capacity. ηR 
egt 

s a function of three factors: 1) the rate of contacts between an 

nfected case and susceptible cases of age group g in region e ( C 

R 
eg );

) the probability of C-19 transmission during a contact between a 

-19 patient and a susceptible individual of age group g; 3) the 

roportion of infected cases. C 

R 
eg is calculated as follows: 

 

R 
eg = 

2 . T g . D eg 

1 + 2 . T g . D eg + 

√ 

1 + 4 . T g . D eg 

(7) 

n which the contact rate depends on the average contact time 

 T g ) and the population density of region e . S g and P g are obtained 

ased on the descriptions mentioned above. Finally, the proportion 

f the infected cases in region e in each period is calculated as the 

atio of the number of infected cases in region e at each period 

 I et ) to the number of population in region e ( R e ). I et is a deci-

ion variable, and it is determined by solving the model. In order 

o simplify, we convert the Formulation (6) into the following for- 

ulation: 

R 
egt = 

(
C 

R 
eg 

)
. ( S g . P g ) . 

(
I et 

R e 

)
= 

(
C 

R 
eg 

)
. ( S g . P g ) . 

(
1 

R e 

)
. I et = η′ R 

egt . I et 

(8) 

The total number of infected cases by a C-19 patient in region 

 in period t equals 
∑ G 

g=1 η
R 
egt = I et 

∑ G 
g=1 η

′ R 
egt = I et .η

′′ R 
et . 

According to the descriptions mentioned above, the model’s ob- 

ective function seeks to minimize the virus transmission from in- 

ected cases to susceptible individuals in the presented network 

uring the planning horizon. It involves transmitting the virus from 

-19 patients when transferred from regions to SFs, from SFs to 

Fs, between HFs, from HFs to QFs, and the virus transmission 

rom patients rejected from different facilities to susceptible peo- 

le. The following assumptions are considered in this study: 

• Suspected cases are classified into several groups according to 

the regions they are located in, and each group is assumed to 
5 
be located at the center of each region due to its uniform pop- 

ulation distribution. 
• The test result is prepared on the same day the test is taken 

• SFs, HF 1 s, HF 2 s, HF 3 s, and QFs are capacitated, and the assigned

patients will be rejected by the facilities in case of facing a ca- 

pacity shortage in these facilities. 
• There are no patients in the facilities at the beginning of the 

planning horizon. 

The main decisions of the presented model are as follows: 

• The optimal location of SFs, HFs, and QFs. 
• The number of suspected C-19 cases allocated to SFs. 
• The number of C-19 cases allocated to HFs and QFs. 
• The number of PT 3 s who are assigned to HF 2 s due to limited

capacities. 
• The optimal capacity of HFs assigned to C-19 patients. 

. Modeling framework 

In this section, the proposed mathematical formulation is pre- 

ented. 

ppendix A. Notations 

The following notations are used in the proposed model in 

ection 3.1 . 

Sets 

E Set of regions, e = { 1 , 2 , . . . , E } 
I , I ′′ Set of candidate locations for SFs, i = { 1 , 2 , . . . , I } 
J, J ′ , J ′′ Set of types of patients, j = { 1 , 2 , 3 } = { PT 1 , PT 2 , PT 3 } 
K, K ′ , K ′′ Set of types of HFs, k = { 1 , 2 , 3 } = { HF 1 , HF 2 , HF 3 } 
L, L ′ , L ′′ Set of candidate locations of HFs, l = { 1 , 2 , . . . , L } 
Q Set of candidate locations of QFs, q = { 1 , 2 , . . . , Q } 
T Set of time periods, t = { 1 , 2 , . . . , T } 

Parameters 

αet The number of suspected cases in region e in period t

βit The percentage of suspected cases in SF i whose tests results are 

negative in period t

γi jt The percentage of suspected cases in SF i whose tests results are 

positive and are categorized in patient type j in period t

δklt The percentage of deceased C-19 cases in HF l of type k in period 

t

ε H 
klt 

The percentage of C-19 cases released from HF l of type k in 

period t

ε Q qt The percentage of C-19 cases released from QF q in period t

σkl k ′ l ′ t The percentage of patients transferred from HF l of type k to HF 

l ′ of type k ′ in period t

ζkl The average number of non-C-19 cases admitted to HF l of type k 

ρS 
i 

The capacity of SF i 

ρH 
kl 

The capacity of HF l of type k 

ρQ 
q The capacity of QF q 

λS 
i 

The cost of opening SF i 

λH 
kl 

The cost of opening HF l of type k 

λQ 
q The cost of opening QF q 

μS 
i 

The operating cost in SF i 

μH 
jkl 

The operating cost of hospitalizing a patient of type j in HF l of 

type k 

μQ 
q The operating cost in QF q 

θRS 
ei 

The cost of transporting a patient from region e to SF i 

θ SH 
ikl 

The cost of transporting a patient from SF i to HF l of type k 

θHH 
kl k ′ l ′ The cost of transporting a patient from HF l of type k to HF l ′ of 

type k ′ 
θHQ 

klq 
The cost of transporting a patient from HF l of type k to QF q 

ξ The penalty cost of rejecting a patient by facilities (SFs, HFs, QFs) 

υ The penalty cost of allocating a patient to an HF that does not 

provide medical services according to his/her need 

ω 

S 
ei 

equals 1 if SF i is located in region e 

ω 

H 
ekl 

equals 1 if HF l of type k is located in region e 

� The total budget 

M A large number 
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Decision variables 

U S 
i 

equals 1 if an SF is established in candidate location i ; otherwise, 0 

U H 
kl 

equals 1 if an HF of type k is established in candidate location l; 

otherwise, 0 

U Q q equals 1 if a QF is established in candidate location q ; otherwise, 0 

X eit The number of suspected cases in region e assigned to SF i in 

period t

Y i jklt The number of C-19 cases of type j transferred from SF i to HF l of 

type k in period t

Z klqt The number of recovered patients transferred from HF l of type k 

to QF q in period t

P S 
eit 

The number of suspected C-19 cases in region e who are rejected 

by SF i in period t

P H 
i jklt 

The number of C-19 patients of type j in SF i who are rejected by 

HF l of type k in period t

P Q 
klqt 

The number of recovered patients of type k who are hospitalized in 

HF l and are rejected by QF q in period t

C kl The percentage of capacity of HF l of type k assigned to C-19 

patients 

EC The establishment cost 

OC The operating cost 

T C The transportation cost 

PC The penalty cost 

Auxiliary variables 

V H 
klt 

The number of available patients in HF l of type k in period t

V Q qt The number of available patients in QF q in period t

Auxiliary binary variable 

B S 
it 

, B H 
klt 

, B Q qt 

Objective decision variable 

T T The transmission rate of the C-19 virus 

ppendix B. Results 

The number of assigned cases to different facilities is shown in 

he following table. 
Table B1 

The number of C-19 suspected cases assigned to SFs and the number of o

horizon under each scenario. 

SF scenario 1 2 3 4 5 6 7 

LAM 858 1031 1204 1030 1203 1376 12

UAM 1034 1242 1450 1241 1449 1657 14

scenario 15 16 17 18 19 20 21

LAM 1376 1375 1549 1722 1206 1379 15

UAM 1658 1657 1865 2074 1452 1661 18

HF 1 scenario 1 2 3 4 5 6 7 

LAM 182 203 223 202 224 244 22

UAM 220 244 269 244 269 293 26

scenario 15 16 17 18 19 20 21

LAM 245 245 265 286 226 247 26

UAM 295 293 320 344 273 297 32

HF 2 scenario 1 2 3 4 5 6 7 

LAM 40 45 51 47 52 57 53

UAM 49 55 61 56 63 69 64

scenario 15 16 17 18 19 20 21

LAM 58 60 65 70 53 58 63

UAM 70 72 78 84 64 70 77

HF 3 scenario 1 2 3 4 5 6 7 

LAM 33 38 43 39 44 50 46

UAM 37 44 50 47 54 60 51

scenario 15 16 17 18 19 20 21

LAM 51 52 57 62 46 51 56

UAM 61 63 69 75 55 61 67

QF scenario 1 2 3 4 5 6 7 

LAM 40 56 71 59 75 90 79

UAM 43 58 80 68 86 105 87

scenario 15 16 17 18 19 20 21

LAM 94 85 100 116 52 68 83

UAM 105 89 108 126 63 82 10

6 
.1. The mathematical formulation 

In this section, the mathematical formulation of the proposed 

ocation-allocation problem is presented. The objective function 

ims to minimize the spread of the C-19 virus as follows: 

in T T = 

E ∑ 

e =1 

I ∑ 

i =1 

T ∑ 

t=1 

η
′′ RS 
ei . X eit . 

3 ∑ 

j=1 

γi jt + 

I ∑ 

i =1 

3 ∑ 

j=1 

3 ∑ 

k =1 

L ∑ 

l=1 

T ∑ 

t=1 

η
′′ SH 
ikl . Y i jklt

+ 

L ∑ 

l=1 

L ∑ 

l ′ =1 

T ∑ 

t=1 

η
′′ HH 
l l ′ . σ1 l 2 l ′ t .V 

H 
1 lt + 

3 ∑ 

k =1 

L ∑ 

l=1 

Q ∑ 

q =1 

T ∑ 

t=1 

η
′′ HQ 
klq 

. Z klqt 

+ 

E ∑ 

e =1 

η
′′ R 
e . 

(
I ∑ 

i =1 

T ∑ 

t=1 

P S eit . ( 1 − βit ) 

+ 

I ∑ 

i =1 

3 ∑ 

j=1 

3 ∑ 

k =1 

L ∑ 

l=1 

T ∑ 

t=1 

P H i jklt .ω 

S 
ei 

+ 

3 ∑ 

k =1 

L ∑ 

l=1 

Q ∑ 

q =1 

T ∑ 

t=1 

P Q 
klqt 

.ω 

H 
ekl 

)
(9)

In fact, this objective function aims to minimize the C-19 trans- 

ission rate in each route and each region regarding Formulations 

5) and ( 8 ). The number of infected cases who go to SF i from re- 

ion e equals the proportion of suspected cases whose test results 

re positive ( γi jt . X eit ). The number of infected cases transferred 

rom SF i to HF l of type k is Y i jklt . The number of infected cases

ransferred from HF 1 to HF 2 equals the proportion of PT 1 whose 

onditions deteriorate ( σ1 l 2 l ′ t .V H 1 lt 
). Finally, the number of recovered 

atients transferred from HF l of type k to QF q is Z klqt . Besides, 

he rejected patients by different facilities (SFs, HFs, and QFs) can 

pread the C-19 in the regions, which is considered in the last term 

f Formulation (9) . subject to 

C = 

I ∑ 

i =1 

λS 
i .U 

S 
i + 

3 ∑ 

k =1 

L ∑ 

l=1 

λH 
kl .U 

H 
kl + 

Q ∑ 

q =1 

λQ 
q .U 

Q 
q (10) 
ccupied beds by C-19 patients in HFs and QFs during the planning 

8 9 10 11 12 13 14 

02 1375 1548 1032 1205 1378 1203 1376 

48 1656 1864 1243 1450 1660 1450 1658 

 22 23 24 25 26 27 

52 1378 1551 1723 1550 1723 1896 

69 1659 1867 2076 1866 2074 2283 

8 9 10 11 12 13 14 

3 243 264 204 225 245 224 244 

8 293 318 246 271 296 270 295 

 22 23 24 25 26 27 

7 246 267 288 267 287 308 

2 297 322 346 321 346 371 

8 9 10 11 12 13 14 

 58 64 47 52 57 53 58 

 70 77 56 63 69 64 70 

 22 23 24 25 26 27 

 60 65 70 66 71 76 

 72 78 84 80 86 92 

8 9 10 11 12 13 14 

 51 56 47 44 50 46 51 

 57 63 56 54 60 55 61 

 22 23 24 25 26 27 

 52 57 62 58 63 69 

 63 69 75 70 76 83 

8 9 10 11 12 13 14 

 94 109 46 62 77 65 81 

 105 124 49 63 80 66 85 

 22 23 24 25 26 27 

 72 87 103 91 106 122 

0 86 105 124 109 128 147 
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C = 

E ∑ 

e =1 

I ∑ 

i =1 

T ∑ 

t=1 

μS 
i . X eit + 

3 ∑ 

j=1 

3 ∑ 

k =1 

L ∑ 

l=1 

T ∑ 

t=1 

μH 
jkl .V 

H 
klt + 

Q ∑ 

q =1 

T ∑ 

t=1 

μQ 
q .V 

Q 
qt 

(11) 

 C = 

E ∑ 

e =1 

I ∑ 

i =1 

T ∑ 

t=1 

θRS 
ei . X eit + 

I ∑ 

i =1 

3 ∑ 

j=1 

3 ∑ 

k =1 

L ∑ 

l=1 

T ∑ 

t=1 

θ SH 
ikl . Y i jklt 

+ 

3 ∑ 

k =1 

L ∑ 

l=1 

Q ∑ 

q =1 

T ∑ 

t=1 

θHQ 
klq 

. Z klqt 

+ 

L ∑ 

l=1 

L ∑ 

l ′ =1 

T ∑ 

t=1 

θHH 
1 l 2 l ′ . σ1 l 2 l ′ t .V 

H 
k =1 ,lt (12) 

C = ξ . 

( 

E ∑ 

e =1 

I ∑ 

i =1 

T ∑ 

t=1 

P S eit + 

I ∑ 

i =1 

3 ∑ 

j=1 

3 ∑ 

k =1 

L ∑ 

l=1 

T ∑ 

t=1 

P H i jklt + 

3 ∑ 

k =1 

L ∑ 

l=1 

Q ∑ 

q =1 

T ∑ 

t=1 

P Q 
klqt 

) 

+ ν. 

I ∑ 

i =1 

L ∑ 

l=1 

T ∑ 

t=1 

Y i, j=2 ,k =3 ,lt (13) 

C + OC + T C + P C ≤ � (14) 

Constraints (10) –( 13 ) calculate total establishment cost, total 

perating cost, total transportation cost, and total penalty cost, re- 

pectively. The presented model aims to find the optimal number 

nd location of SFs, HFs, and QFs. The facilities can be established 

n the obtained optimal locations, and the opening costs are con- 

idered for these facilities ( Constraint (10) ). The suspected cases 

efer to SFs, and they are tested for C-19 disease there. Thus, we 

onsider operating costs for suspected cases in these facilities. An 

perating cost is also considered for assigned patients to differ- 

nt types of HFs and QFs ( Constraint (11) ). Furthermore, the trans- 

ortation cost is considered for transferring suspected cases from 

egions to SFs, transferring C-19 patients from SFs to HFs, transfer- 

ing patients between HFs, and transferring patients from HFs to 

Fs ( Constraint (12) ). Finally, some patients are rejected by facil- 

ties due to the lack of capacities, and a penalty cost is assigned 

o these patients. In some cases, PT 3 s are assigned to HF 2 s due to

he lack of capacity in HF 3 s, which are not compatible with these 

atients’ needs; therefore, we consider penalty costs for such cases 

 Constraint (13) ). Constraint (14) represents the budget constraint. 

I 
 

i =1 

( X eit + P S eit ) ≥ αet , ∀ e, t (15) 

S 
i .B 

S 
it ≤

E ∑ 

e =1 

X eit ≤ ρS 
i .U 

S 
i , ∀ i, t (16) 

E 
 

e =1 

P S eit ≤ M.B 

S 
it , ∀ i, t (17) 

In the presented network, the suspected cases in each region 

re assigned to opened SFs which are capacitated. In each region 

nd each period, there are a number of suspected cases that will 

e assigned to SFs or will be rejected by SFs due to limitation 

f capacity in those facilities, which is shown in Constraint (15) . 

he capacities of opened SFs are also limited, and therefore, the 

umber of suspected cases refers to an SF should be less than its 

apacity, as shown in Constraint (16) . As mentioned before, some 

uspected cases cannot refer to the assigned SFs due to lack of ca- 

acity, and Constraint (17) shows that opened SFs can reject the 

uspected cases. It is evident that suspected cases will be rejected 
7 
y an opened SF when that SF is filled to capacity, guaranteed by 

onstraints (16) and ( 17 ). To do so, we defined a binary variable,

 

S 
it 

. This variable equals 0 if the SF i is not opened, and it guar-

ntees that P S 
eit 

equals 0. On the other hand, if SF i is opened, B S 
it 

an be equal to 0 or 1. In fact, if SF i is filled ( B S 
it 

= 1 ), suspected

ases can be rejected by SF i ; otherwise, B S 
it 

= 0 , and consequently,

o suspected cases are rejected by SF i due to sufficient capacity 

n that SF. In other words, 

 

S 
it = 

{ 

1 i f SF i is opened and is f il l ed in period t 
0 i f SF i is not opened or i f SF i is opened and is not 

f il l ed in period t 

L 
 

l=1 

( Y i jklt + P H i jklt ) ≥ γi jt . 

E ∑ 

e =1 

X eit , ∀ i, t; j = 1 , k = 1 (18)

L 
 

l=1 

( Y i jklt + P H i jklt ) ≥ γi jt . 

E ∑ 

e =1 

X eit , ∀ i, t; j = 2 , k = 2 (19)

L ∑ 

l=1 

(
Y i jklt + P H i jklt 

)
+ 

L ∑ 

l ′ =1 

( Y i jk ′ l ′ t + P H i jk ′ l ′ t ) ≥ γi jt . 

E ∑ 

e =1 

X eit , 

∀ i, t; j = 3 , k = 3 , k ′ = 2 (20) 

In the next step, the suspected cases referred to SFs will be 

ested, the number of patients of each type will be determined, 

nd they will be assigned to different types of HFs based on 

heir conditions. Also, some patients will be rejected by hospitals 

ue to capacity limitations. The confirmed PT 1 s in each SF will 

e assigned to HF 1 s or rejected by these facilities, as Constraint 

18) shows. Constraint (19) also states that PT 2 s will be assigned to 

F 2 s or rejected by these facilities. PT 3 s will be assigned to HF 3 s

r assigned to HF 2 s in case of capacity limitation in HF 3 s. Thus,

onstraint (20) implies that the PT 3 s will be assigned to HF 2 s or

F 3 s or rejected by these HFs. 

I 
 

i =1 

Y i jklt = V 

H 
klt , ∀ l; j = 1 , k = 1 , t = 1 (21)

V 

H 
kl ( t−1 ) 

. 

( 

1 − ε H kl ( t−1 ) 
−

L ∑ 

l ′ =1 

σkl k ′ l ′ ( t−1 ) .U 

H 
k ′ l ′ 

) 

+ 

I ∑ 

i =1 

Y i jklt = V 

H 
klt , 

∀ l, t ≥ 2 ; j = 1 , k = 1 , k ′ = 2 (22) 

After confirmed cases are allocated to hospitals, it should be 

uaranteed that the number of allocated patients to each type of 

F is less than its capacity. Constraint (21) indicates that the num- 

er of available PT 1 s in an HF 1 in the first period equals the num-

er of PT 1 s transferred from SFs to this facility. It is assumed that 

here are no patients in these facilities at the beginning of the 

lanning horizon. In the following periods, a proportion of the ca- 

acity has been filled by patients who were already in the hospi- 

als and are still receiving treatments. Notably, the conditions of 

ome PT 1 s in HF 1 s may deteriorate. In such cases, they will be 

ransferred from HF 1 s to HF 2 s to receive their required care. Also, 

 proportion of patients will be discharged in each period ( T ≥ 2 ). 

herefore, the number of available PT 1 s in an HF 1 in each pe- 

iod ( T ≥ 2 ) equals the number of allocated PT 1 s to this facility in

his period addition to the number of patients in the previous pe- 

iod by considering the number of patients transferred to opened 

F 2 s due to deteriorating their conditions and the number of dis- 

harged patients, as shown in Constraint (22) . Notably, the number 

f transferred and discharged patients is determined at the end of 

ach period, and therefore, they affect the facility’s capacity in the 
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c
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ext period. 

I 
 

i =1 

( Y i jklt + Y i j ′ klt ) = V 

H 
klt , ∀ l; j = 2 , k = 2 , j ′ = 3 , t = 1 (23)

V 

H 
kl ( t−1 ) 

. 
(
1 − ε H kl ( t−1 ) 

− δkl ( t−1 ) 

)
+ 

I ∑ 

i =1 

( Y i jklt + Y i j ′ klt ) 

+ 

L ∑ 

l ′′ =1 

σk ′′ l ′′ kl ( t−1 ) .V 

H 
k ′′ l ′′ ( t−1 ) 

= V 

H 
klt , 

∀ l, t ≥ 2 ; j = 2 , k = 2 , j ′ = 3 , j ′′ = 1 , k ′′ = 1 (24) 

As mentioned before, some PT 3 s may be assigned to HF 2 s due 

o a lack of capacity in HF 3 s. Thus, the number of available patients

n each HF 2 in the first period equals the number of transferred 

T 2 s and PT 3 s to this facility, as Constraint (23) shows. In HF 2 s,

 proportion of available patients will be released or deceased in 

ach period, the number of which is determined at the end of each 

eriod ( T ≥ 2 ). It is mentioned that some PT 1 s are transferred to

F 2 s, the number of which is determined at the end of each pe-

iod. Therefore, the number of available patients in each HF 2 in 

ach period ( T ≥ 2 ) equals the sum of the number of patients who

ave been in the HF 2 from the previous period (considering the 

umber of discharged and deceased patients), the number of pa- 

ients assigned to the HF 2 in that period, and the number of pa- 

ients transferred from HF 1 s to the HF 2 in the previous period, as 

hown in Constraint (24) . 

I 
 

i =1 

Y i jklt = V 

H 
klt , ∀ l; j = 3 , k = 3 , t = 1 (25)

V 

H 
kl ( t−1 ) 

. 
(
1 − ε H kl ( t−1 ) 

− δkl ( t−1 ) 

)
+ 

I ∑ 

i =1 

Y i jklt = V 

H 
klt , 

∀ l, t ≥ 2 ; j = 3 , k = 3 (26) 

In HF3, the number of available patients in the first period 

quals the number of PT3s assigned to that HF3, since there are 

o patients in HF 3 at the beginning of the planning horizon, and 

here are no deceased or released patients in the first period, as 

hown in Constraint (25) . Constraint (26) indicates that the num- 

er of available patients in each period ( T ≥ 2 ) equals the sum of

he number of available patients in HF3s in the previous period 

regarding the number of deceased and released patients at the 

nd of that period) and the number of transferred patients from 

Fs to this facility in that period. 

H 
kl .B 

H 
klt ≤ V 

H 
klt ≤ ρH 

kl .U 

H 
kl , ∀ l, t; k = 1 (27) 

I 
 

i =1 

P H i jklt ≤ M.B 

H 
klt , ∀ l, t; j = 1 , k = 1 (28) 

H 
kl . C kl + ζkl ≤ ρH 

kl .U 

H 
kl , ∀ l, k = 2 , 3 (29) 

H 
kl . C kl .B 

H 
klt ≤ V 

H 
klt ≤ ρH 

kl . C kl , ∀ l, t, k = 2 , 3 (30)

I 
 

i =1 

P H i jklt + 

I ∑ 

i =1 

P H i j ′ klt ≤ M.B 

H 
klt , ∀ l, t; j = 2 , j ′ = 3 , k = 2 (31)

I 
 

i =1 

P H i jklt ≤ M.B 

H 
klt , ∀ l, t; j = 3 , k = 3 (32) 

The number of available patients in each established HF (in- 

luding HF , HF , and HF ) in each period should be less than the
1 2 3 

8 
apacity of that facility. As mentioned before, patients can be re- 

ected by an opened HF if the HF is filled. These conditions are 

atisfied by Constraints (27) and ( 28 ) for HF 1 . To do so, we define

 binary variable that 

 

H 
klt = 

{ 

1 if HF l of type k is opened and is filled in period t 
0 if HF l of type k is not opened or if HF l of type 

k is opened and is not filled in period t 

In HF 2 and HF 3 , a proportion of the capacity is assigned to non-

-19 patients. Therefore, the number of C-19 and non-C-19 pa- 

ients should be less than the capacity of opened HFs, as Constraint 

29) shows. Constraint (30) guarantees that the number of avail- 

ble C-19 patients should be less than the allocated capacity to C- 

9 patients. Also, the C-19 patients will be rejected by HF 2 and 

F 3 if the assigned capacity to C-19 patients is full, as Constraints 

30 –32 ) show. 

Q 
 

 =1 

( Z klqt + P Q 
klqt 

) ≥ V 

H 
klt .ε 

H 
klt , ∀ k, l, t (33) 

3 
 

k =1 

L ∑ 

l=1 

Z klqt = V 

Q 
qt , ∀ q ; t = 1 (34) 

 

Q 
q ( t−1 ) 

. 
(
1 − ε Q 

q ( t−1 ) 

)
+ 

3 ∑ 

k =1 

L ∑ 

l=1 

Z klqt = V 

Q 
qt , ∀ q, t ≥ 2 (35) 

Q 
q .B 

Q 
qt ≤ V 

Q 
qt ≤ ρQ 

q .U 

Q 
q , ∀ q, t (36) 

3 
 

k =1 

L ∑ 

l=1 

P Q 
klqt 

≤ M.B 

Q 
qt , ∀ q, t (37) 

The patients in each type of HFs, after their treatment, are dis- 

harged and assigned to QFs; however, they will be rejected by 

Fs in case of capacity shortage in these facilities, as shown in 

onstraint (33) . The number of available recovered cases in each 

F in the first period equals the number of assigned cases to that 

acility, as Constraint (34) shows. At the end of each period, some 

atients are in QFs, a proportion of whom will be released, and 

he remaining patients will fill a proportion of the facility capac- 

ty in the next period. Therefore, the number of available cases 

n a QF in each period ( T ≥ 2 ) equals the sum of the number of

vailable cases in the QF since previous periods and the number 

f assigned cases to the QF in this period, as shown in Constraint 

35) . Constraint (36) indicates that the number of available cases 

n each opened QF should be less than its capacity. Also, the re- 

overed cases can be rejected by opened QFs in case of capacity 

hortage. This condition is satisfied by Constraints (36) and ( 37 ). 

o do so, we define an auxiliary binary variable as follows: 

 

Q 
qt = 

{ 

1 i f QF q is opened and is f il l ed in period t 
0 i f QF q is not opened or i f QF q is opened and is 

not f il l ed in period t 

 

S 
i , U 

H 
kl , U 

Q 
q , B 

S 
it , B 

H 
klt , B 

Q 
qt ∈ { 0 , 1 } , ∀ i, k, l, q, t (38)

 eit , Y i jklt , Z klqt , P 
S 
eit , P 

H 
i jklt , P 

Q 
klqt 

, C kl , V 

H 
klt , V 

Q 
qt ≥ 0 , ∀ e, i, j, k, l, q, t 

(39) 

Constraints (38) and ( 39 ) show the types of decision variables. 
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.2. The linear counterpart of the proposed mathematical formulation 

The proposed formulation is nonlinear due to the multiplication 

f a binary and a continuous variable in Constraints (22) and (30) 

 V H 
kl( t−1 ) 

.U 

H 
k ′ l ′ and C kl .B 

H 
klt 

). We convert the Constraints (22) into its 

inear form by defining a new positive variable ( F kl k ′ l ′ t ) as follows 

 Psarris & Floudas, 1990 ): 

V 

H 
kl ( t−1 ) 

. 
(
1 − ε H kl ( t−1 ) 

)
−

L ∑ 

l ′ =1 

σkl k ′ l ′ ( t−1 ) . F kl k ′ l ′ ( t−1 ) + 

I ∑ 

i =1 

Y i jklt = V 

H 
klt , 

∀ l, t ≥ 2 ; j = 1 , k = 1 , k ′ = 2 (40) 

 kl k ′ l ′ ( t−1 ) ≤ M.U 

H 
k ′ l ′ , ∀ l, t ≥ 2 ; k = 1 , k ′ = 2 (41)

 kl k ′ l ′ ( t−1 ) ≥ M. (U 

H 
k ′ l ′ − 1) + V 

H 
kl ( t−1 ) 

, ∀ l, t ≥ 2 ; k = 1 , k ′ = 2 (42)

 kl k ′ l ′ ( t−1 ) ≤ V 

H 
kl ( t−1 ) 

, ∀ l, t ≥ 2 ; k = 1 , k ′ = 2 (43)

 kl k ′ l ′ t ≥ 0 , ∀ l, t ≥ 1 ; k = 1 , k ′ = 2 (44)

In these constraints, M is the upper value of V H 
kl( t−1 ) 

, which 

quals ρH 
kl 

. The linear form of Constraint (30) is as follows ( F ′ 
klt 

is a

ositive variable): 

H 
kl .F 

′ 
klt ≤ V 

H 
klt ≤ ρH 

kl . C kl , ∀ l, t; k = 2 , 3 (45) 

 

′ 
klt ≤ M.B 

H 
klt , ∀ l, t; k = 2 , 3 (46) 

 

′ 
klt ≥ M. (B 

H 
klt − 1) + C kl , ∀ l, t; k = 2 , 3 (47)

 

′ 
klt ≤ C kl , ∀ l, t; k = 2 , 3 (48) 

 

′ 
klt ≥ 0 , ∀ l, t; k = 2 , 3 (49) 

In the above constraints, M is the upper value of C kl which 

quals 1. 

. Methodology 

We live in a fast-changing world. We have limited knowledge 

bout the future, and many uncertainties exist even if the past 

nformation is available. During the CVO, many factors (such as 

dopted policies and the public behavior toward the policies) af- 

ect healthcare systems; consequently, decisions should be made 

n a highly uncertain environment, and DMs should adopt suitable 

pproaches to hedge against such uncertainties as much as pos- 

ible. During this outbreak, an optimal allocation of resources is a 

ritical factor that can significantly improve the performance of the 

ealthcare system. 

In the proposed location-allocation problem, the number of sus- 

ected cases in each period is highly dynamic. The number of di- 

gnosed cases in SFs depends on this parameter. The amount of 

apacity filled by patients in HFs and QFs and the number of pa- 

ients admitted to HFs and QFs is subject to this random param- 

ter. Furthermore, this uncertain parameter arrives over time. In 

ther words, this parameter is unknown now, but it will be re- 

lized in the future, and the realized information can update the 

ecisions. Stochastic programming is applied to models in which 

ome data is contaminated with random uncertainty. Notably, the 

ecisions are made without prior knowledge of the entire data 
9 
tream; however, such data is updated over time; consequently, 

he decisions are updated based on the revealed data. According 

o the above, we use stochastic programming to deal with uncer- 

ainty in the proposed network. 

Two-stage stochastic programming (TSP) and multi-stage 

tochastic programming (MSP) are two of the most commonly used 

pproach to hedge against uncertainties. In the TSP approach, some 

nitial decisions (first-stage decisions) are made before the realiza- 

ion of the uncertain data, after which second-stage decisions are 

ade regarding the realized data ( Hosseini-Motlagh et al., 2020 ; 

amani et al., 2020 ). In other words, it is assumed that the data

rrives at one point in the planning horizon, and therefore, de- 

isions can be updated at one point in time. However, the data 

an be realized in several points of the planning horizon. In such 

ircumstances, MSP is an appropriate approach to cope with such 

ncertain parameters. In this approach, decisions can be revised as 

ore data becomes available. Therefore, the decisions will be more 

eliable and flexible than the decisions made regarding the TSP ap- 

roach. According to the above, we applied the MSP approach to 

he proposed model. 

MSP approach is a more general form of the TSP. In the MSP, 

here are several stages, and decision variables are divided into 

everal groups based on the related stages. In this approach, the 

ain issue is what data is available to DMs at one stage when 

aking relevant decisions to this stage. In fact, stages are the point 

f time in which new information is realized. In the MSP, the evo- 

ution of the uncertain data can be depicted in the form of a sce- 

ario tree, as Fig. 2 shows. The scenario tree consists of nodes 

nd arcs. In the first stage, the root node represents the initial 

tate of the network. In this node, no information has been real- 

zed yet, and the decisions should be made without any knowl- 

dge. The root node is connected to some nodes (child nodes) in 

he second stage; each of these nodes is associated with the pos- 

ible outcomes of the uncertain parameter in this stage. Each of 

he nodes in the second stage is connected to several nodes in the 

hird stage, which are considered as the possible realization of the 

ncertain data in the third stage. The branching continues until the 

nal stage. Each unique path for realizing the uncertain date from 

he first stage to the last stage creates a particular scenario. As il- 

ustrated in Fig. 2 , each child node is connected to at most one 

ower-stage node, called the parent node, and the child nodes con- 

ected to the same parent node are called sibling nodes. Notably, 

he stages and periods are not equivalent, and a stage may include 

everal periods. 

In a scenario tree, a probability is assigned to each possible re- 

lization of the uncertain data. The sum of probabilities associated 

ith sibling nodes equals 1, and the probability of the root node is 

. Moreover, the probability of a scenario is calculated by multiply- 

ng the probabilities of the nodes that belong to the unique path 

ssociated with that scenario. In the classical MSP, the value of the 

robabilities is estimated based on the experts’ opinions. However, 

n real-world situations, estimations are subject to uncertainties; 

herefore, the results may not be reliable in some cases. To address 

his issue, we apply the MFSP approach, in which the probability 

f the nodes is considered a fuzzy number. The MFSP approach is 

resented below, and the definitions are provided in Supplemen- 

ary Material, Section S1. 

.1. Multi-stage fuzzy stochastic programming approach 

In this section, we apply the MFSP approach to the proposed 

ocation-allocation model to address the uncertainty in some pa- 

ameters (the number of suspected cases) and the uncertainty in 

he probability of the nodes of the scenario tree. The compact form 
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Fig. 2. An illustration of a scenario tree. 
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f the model is as follows: 

in z = 

∑ 

nεN ,tεt n 

˜ P n .η. x tn 

ubjectto 

. x tn ≥ ˜ αtn , ∀ nεN , tεt n 
.u + C. x tn ≤ ξ , ∀ nεN , tεt n 
 tn ≥ 0 , ∀ nεN , tεt n ; u ∈ { 0 , 1 } 

(50) 

n which n represents the nodes of the scenario tree ( nεN ). ˜ P n 

enotes the probability of node n in the scenario tree. This param- 

ter is uncertain, which is considered a triangular fuzzy number. 

 ̃

 P 

n = ( P 

p 
n , P 

m 

n , P 

o 
n ) ). A and C are the coefficient matrices, and η, 

, and ξ are deterministic parameters. x tn corresponds to decision 

ariables, and t n denotes the periods associated with node n . u is a 

inary decision variable, which is determined at the beginning of 

he planning horizon. In fact, it is determined before the realiza- 

ion of any information, and it does not depend on n . ˜ αtn is an un-

ertain parameter, which becomes available in each stage. To deal 

ith the possibilistic objective function and chance constraints, Me 

easure is used, as follows: 

in z = E Me 

( ∑ 

nεN ,tεt n 

˜ P n .η. x tn 

)
ubjectto 

e { A. x tn ≥ ˜ αtn } ≥ �, ∀ nεN , tεt n 
.u + C. x tn ≤ ξ , ∀ nεN , tεt n 
 tn ≥ 0 , ∀ nεN , tεt n ; u ∈ { 0 , 1 } 

(51) 

here � is the DMs’ minimum confidence level. Formulation 

51) can be transformed into LAM and UAM forms based on Def- 

nition S7 (in Supplementary Material). Finally, the deterministic 

ounterparts of LAM and UAM formulations are provided based on 

efinitions S5 and S6 and the transformation methods provided in 

u and Zhou (2013) and Zahiri et al. (2017) , as shown below. 

LAM : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

min z = E Me 

( ∑ 

nεN ,tεt n 

˜ P n .η. x tn 

)
subject to 

P os { A. x tn ≥ ˜ αtn } ≥ �, ∀ nεN , tεt n 
b.u + C. x tn ≤ ξ , ∀ nεN , tεt n 
.u + C. x tn ≤ ξ , ∀ nεN , tεt n 

UAM : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

min z = E Me 

( ∑ 

nεN ,tεt n 

˜ P n .η. x tn 

)
subject to 

Nec { A. x tn ≥ ˜ αtn } ≥ �, ∀ nεN , tεt n 
b.u + C. x tn ≤ ξ , ∀ nεN , tεt n 
x tn ≥ 0 , ∀ nεN , tεt n ; u ∈ { 0 , 1 } 

(52) 
10 
The deterministic counterparts of LAM and UAM are as follows 

 Zahiri et al. (2017) ): 

LAM : 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

min z = 

∑ 

nεN ,tεt n 

((
1 −�

2 

)
. ˙ P 

p 
n + 

1 
2 
. ˙ P 

m 

n + 

�
2 
. ˙ P 

o 
n 

)
.η. x tn 

subject to 

A. x tn ≥ �.αm 

tn + ( 1 − �) .α
p 
tn , ∀ nεN , tεt n 

b.u + C. x tn ≤ ξ , ∀ nεN , tεt n 
x tn ≥ 0 , ∀ nεN , tεt n ; u ∈ { 0 , 1 } 

UAM : 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

min z = 

∑ 

nεN ,tεt n 

((
1 −�

2 

)
. ˙ P 

p 
n + 

1 
2 
. ˙ P 

m 

n + 

�
2 
. ˙ P 

o 
n 

)
.η. x tn 

subject to 

A. x tn ≥ ( 1 − �) .αm 

tn + �.αo 
tn , ∀ nεN , tεt n 

b.u + C. x tn ≤ ξ , ∀ nεN , tεt n 
x tn ≥ 0 , ∀ nεN , tεt n ; u ∈ { 0 , 1 } 

(53) 

here � is the optimistic-pessimistic parameter of the Me mea- 

ure, as stated in Definition S3. Also, ˙ P n is the updated value of P n 

ased on Definition S8. The MFSP form of the proposed model in 

ection 3.1 and its deterministic counterpart are provided in Sup- 

lementary Material, Section S2. 

. The case 

On 17 November 2019, the first C-19 case was reported in 

uhan, China, and the virus has spread around the world rapidly. 

he virus has reached Iran on 19 February 2020, and all the 

rovinces of the country were affected by the virus. Tehran is the 

ost populated city in Iran, and therefore, it is one of the most 

ulnerable cities to C-19. Tehran has 22 districts, in which dis- 

rict 10 is investigated in this study. 317, 160 people live in this 

rea, and it is the most densely populated district in Tehran. As 

hown in Fig. 3 , district 10 is divided into 17 zones called regions

enceforth. The population, area, and density of the regions are 

nserted in Table S1 in Supplementary Material. We assume that 

he suspected cases in each region are located in the center of the 

egions. The candidate locations for SFs, HFs, and QFs are shown 

n Fig. 3 . In Iran, there are 120 laboratories for diagnosis C-19, in 

hich 30,0 0 0 tests can be conducted daily. Therefore, the capac- 

ty of each SF is considered 250. Based on the data of Mousazadeh 

t al. (2018) , the capacity of HF 2 s and HF 3 s is considered 620. No-

ably, a proportion of capacities is assigned to non-C-19 patients in 

F 2 s and HF 3 s. Based on the data of Mousazadeh et al. (2018) , on

verage, 190 persons refers to a hospital in district 10 daily, such 

hat 60%, 20%, 8%, and 12% of them need major services, minor 

ervices, special care services, and rehabilitation services, respec- 

ively. Minor services, rehabilitation services, and a proportion of 
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Fig. 3. The regions and the candidate locations of SFs, HFs, and QFs. 
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2 https://www.health.nd.gov/diseases-conditions/coronavirus/ 

north- dakota- coronavirus- cases#collapse- accordion- 3661- 1 
3 https://www.nj.gov/health/cd/topics/covid2019 _ dashboard.shtml 
4 https://tn.ai/2109911 
ajor services (such as elective surgeries) can be canceled due to 

he risk of spreading C-19, and it is supposed that about 60% of 

he needs for regular services in hospitals declines. Therefore, we 

onsider that the average number of referred non-C-19 cases to a 

ospital (HF 2 or HF 3 ) is 76. Besides, the capacities of HF 1 s and QFs

re considered 500 based on the experts’ opinions. The geographi- 

al coordinates of the candidate location for SFs, HFs, and QFs are 

nserted in Table S2. The candidate locations have been chosen so 

hat to be accessible to all people living in this area. 

Based on the reports of the Iran ministry of health and medical 

ducation, C-19 test results are positive for 25–30% of suspected 

ases who refer to SFs. 12.3% of these confirmed cases need inpa- 

ient care, in which 50% of them have underlying conditions (20% 

iabetes, 15% hypertension, and 15% cardiovascular disease) ( Iran 

inistry of Health & Medical Education, 2020 ). Based on the doc- 

mented data, a portion of infected patients in HF 2 s and HF 3 s will

ie. The death rate of C-19 in Iran is 6% ( Worldometers, 2020 ),

n which 90% of them have underlying conditions. 1 Therefore, the 

eath rate in HF 2 s and HF 3 s is considered 0.6% and 5.4%, respec-

ively. Besides, it is assumed that the discharge rate in HFs and 

Fs is 50% ( Li et al., 2020 ). Also, it is supposed that the condition

f 10% of mild cases will deteriorate, and they will need inpatient 

are after they are accepted by HF 1 s ( Chen et al., 2020 ). 

We categorized the population of the area into three age 

roups: children (0–14), adults (15–64), older adults (above 64). 

ased on the age-gender pyramid of Tehran, 18%, 73%, and 9% of 

he population are in the age group 0–14, 15–64, and above 64, re- 

pectively ( Mean & Median Age of Iranian Population 2016, 2017 ). 

he people’s susceptibility to C-19 infection varies with the age of 

he people. Based on the researches, children are less vulnerable to 

he virus, and the elderly population is the most vulnerable to this 

irus. In other words, it is declared that the susceptibility to the 

-19 tends to increase with age. Therefore, the susceptibility ratio 

f children to adults is considered 0.34, and the susceptibility ratio 

f the elderly population to adults is 1.47 ( Zhang et al., 2020 ). 

When a C-19 patient coughs, sneezes, or speaks, the susceptible 

eople may be infected by the C-19 virus directly. Furthermore, the 

bjects may be contaminated with the C-19 virus when infected 

ersons touch the objects, which leads to the indirect transmission 

f the virus. Thus, a transmission event occurs when a suscepti- 

le person interacts with infected cases or contaminated objects. 

e consider that ten transmission events occur hourly according 
1 https://tn.ai/2287823 

11 
o available data, experts’ opinions, and information of the coun- 

ries that trace C-19 contacts 2 , 3 ( Aleta et al., 2020 ; Hu et al., 2021 ).

he contact duration for adults is also considered more than for 

hildren and older adults since they do a wide range of activities. 

e also consider that the contact duration of adults with children 

nd elderly groups is higher than with adults because of children 

nd elderly groups’ needs for the care of adults. 

We calculate the transportation distance between nodes (be- 

ween the region and SFs, SFs and HFs, HF 1 s and HF 2 s, HFs and

Fs) with Google Maps, and they are reported in Tables S5–S8 (in 

upplementary Material). The transportation costs are calculated 

ased on the fuel consumption and distance of the route. More- 

ver, to calculate the population density of a route connecting two 

odes, we first determine the best route between the nodes by 

oogle Map. Then we obtain the portion of the route which is lo- 

ated in each region by Google Map. Finally, we calculate the pop- 

lation density of this route with Formulation 3. 

Iran ministry of roads and urban development estimated that 

ost of construction and equipping a hospital per bed is 131,600$, 

nd consequently, establishing a 600-bed hospital (HF 2 and HF 3 ) 

osts 81,592,0 0 0$. 4 Also, according to experts’ viewpoint, the costs 

f establishing HF 1 and QFs are estimated at 45,0 0 0,0 0 0$. The op-

rating cost for a suspected case in SFs is considered 167$. 5 Some 

-19 patients will need to stay in the ICU, and C-19 patients with 

he underlying disease may require treatment in the ICU more than 

ther C-19 patients. 5% of C-19 patients in HF 2 s and 20% of C-19 

ases in HF 3 s are sent to ICUs. 6 The average length of staying at 

ospitals for C-19 patients who will need intensive care is seven 

ays, and the average length of staying at the hospital for other 

-19 patients is five days ( Rees et al., 2020 ). Besides, the cost of

reating a mild C-19 patient is 643$, and the cost of treating a se- 

ere C-19 patient is 1286$. 7 Accordingly, the daily costs for treating 

ne patient in HF 1 , HF 2 , and HF 3 are 120$, 130$, and 140$, respec-

ively. Finally, the patients are sent to QFs, and the average length 

f staying in QFs is seven days. 8 The operating cost in QFs is es- 

imated at 600$ per patient, and consequently, the daily operating 
5 https://www.borna.news/fa/tiny/news-1015999 
6 https://www.jjo.ir/005Ile 
7 https://www.eghtesadonline.com/n/2Hhu 
8 https://www.jjo.ir/005Ile 

https://tn.ai/2287823
https://www.health.nd.gov/diseases-conditions/coronavirus/north-dakota-coronavirus-cases#collapse-accordion-3661-1
https://www.nj.gov/health/cd/topics/covid2019_dashboard.shtml
https://tn.ai/2109911
https://www.borna.news/fa/tiny/news-1015999
https://www.jjo.ir/005Ile
https://www.eghtesadonline.com/n/2Hhu
https://www.jjo.ir/005Ile
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Fig. 4. The scenario tree of the proposed problem. 

Fig. 5. The relation between the values of the sibling nodes. 
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ost in QFs per patient is 86$. Moreover, the total budget is con- 

idered 60 0,0 0 0,0 0 0$ based on the experts’ opinion. 

The related scenario tree to the proposed problem is depicted 

n Fig. 4 . The scenario tree includes four stages, each of which 

ncludes two periods (stage 1 ( t 1 = 1,2), stage 2 ( t 2 = 3,4), stage 3

 t 3 = 5,6), and stage 4 ( t 4 = 7,8)). The probability of the nodes and

heir revised values are inserted in Table S3 in Supplementary Ma- 

erial. The probability is determined based on the experts’ opin- 

ons and regarding the available data. Furthermore, the number of 

uspected cases in each region and each period associated with 

ach node of the scenario tree ( ̃  αetn ) is a fuzzy number, which 

s determined as ˜ αetn = ( αp 
etn , α

m 

etn , α
o 
etn ) = ( 0 . 8 αm 

etn , α
m 

etn , 1 . 2 α
m 

etn ) . 

urthermore, each parent node is connected to three child nodes, 

s shown in Fig. 4 . We consider that among sibling nodes, the 

umber of the suspected cases of the left child node is 50% 

f the associated value to the middle child node; also, for the 

ight child node, this value is 150% of the associated value to 

he middle child node. For example, for sibling nodes 2, 3, and 

, we consider that ( αp 
et2 

, αm 

et2 
, αo 

et2 
) = 0 . 5 × ( αp 

et3 
, αm 

et3 
, αo 

et3 
) and 

 αp 
et4 

, αm 

et4 
, αo 

et4 
) = 1 . 5 × ( αp 

et3 
, αm 

et3 
, αo 

et3 
) , as shown in Fig. 5 . Addi-

ional data are provided in the Supplementary Material, Section S3. 

. Implementation and evaluation 

In this section, the proposed model is solved using the real 

ata, and the MFSP approach is applied to hedge against uncer- 

ainties. All models are solved by GAMS software and Cplex solver 

n a reasonable time with 0.00% GAP. The results are reported in 

he following, and analyses are conducted on some important pa- 

ameters. 

.1. Implementation results 

First, we formulate the location-allocation problem. Then, the 

FSP approach is applied to the model to cope with uncertain 

arameters. By applying this approach, the model transforms into 

AM and UAM, which are equivalent to the lower and upper ap- 

roximation models, respectively. The results of these models sug- 

est interval values for DMs; consequently, DMs can make their 

ecisions in this interval regarding their preferences. In decision- 

aking in fuzzy environments, the MFSP approach provides a 
12 
ange of potential choices for DMs, and the maximum and mini- 

um levels of optimal decisions are determined. Accordingly, DMs 

an assess the different choices and make the best decisions re- 

arding their attitudes. Based on Definition S7, the feasible region 

f LAM is greater than UAM, and consequently, the value of the ob- 

ective function of LAM is lower than UAM. The model is solved for 

= 0 . 5 and � = 0 . 9 , and the summary of the results is provided

n Table 1 and Table B1 (in Appendix B ). 

The proposed model aims to minimize the transmission rate of 

he C-19 virus during the planning horizon in district 10 of Tehran 

y considering different scenarios. Based on Table 1 , the objective 

alue of the LAM is 0.11154%, and the objective value of the UAM

s 0.136414%. In fact, the MFSP approach provides the interval so- 

ution [0.0011154, 0.00136414] for DMs to make better decisions in 

he fuzzy environment. The UAM is formulated with a more pes- 

imistic attitude than LAM, and consequently, the value of the ob- 

ective function of the UAM is greater than the objective value of 

he LAM. Furthermore, the established facilities in the network for 

AM and UAM are determined in Table 1 . The number and location 

f the established SFs and HFs (HF 1 s, HF 2 s, and HF 3 s) are the same

or LAM and UAM. However, by solving LAM, two QFs are suggested 

o be established in the network, and by solving UAM, one QF is 

pened. The reason is that the UAM is formulated based on the Nec

easure, and the number of suspected cases is considered more 

han that number in LAM; consequently, the number of C-19 pa- 

ients and the cost associated with their treatment increase. As a 

esult, more budget is spent on treating patients, and the number 

f established QFs decreases (regarding the limited budget). The lo- 

ations of established facilities are depicted in Fig. 6 . Furthermore, 

t is determined that approximately 80% of the established HF 2 s 

nd the HF 3 is assigned to non-C-19 patients. Also, due to the suf- 

cient capacity, no patients have been rejected by health centers 

SFs, HFs, and QFs). 

The number of suspected cases assigned to SFs and the num- 

er of occupied beds by C-19 patients in HFs and QFs during the 

lanning horizon under each scenario are inserted in Table B1 in 

ppendix B . As mentioned before, the number of PT 1 s is greater 

han the number of PT 2 s and PT 3 s, and consequently, more beds 

re occupied in HF 1 s rather than HF 2 s and HF 3 s under each sce-

ario. Besides, despite the same ratio of PT 2 s and PT 3 S, more beds

re occupied in HF 2 s than HF 3 s under each scenario. The reason 
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Table 1 

The summary of the results for LAM and UAM. 

T T U S 1 U S 2 U S 3 U H 11 U H 12 U H 13 U H 21 U H 22 U H 23 U H 31 U H 32 U H 33 U Q 
1 

U Q 
2 

LAM 0.00111540 0 1 1 1 0 1 1 1 1 0 0 1 1 1 

UAM 0.00136414 0 1 1 1 0 1 1 1 1 0 0 1 1 0 

Fig. 6. The locations of established SFs, HFs, and QFs. 

Fig. 7. The value of the transmission rate under each scenario. 
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s that a portion of PT 1 s is transferred from HF 1 s to HF 2 s due to

he deterioration of their conditions. Furthermore, the number of 

ccupied beds in QFs is shown in Table B1 , which is less than

he number of occupied beds in HFs. Given that the minimum 

uration of treatment is considered four days, no bed is occu- 

ied until the fourth period. On the other hand, the patients ad- 

itted to hospitals from the 4th period onwards will be trans- 

erred to QFs from the 9th period onwards (regarding the eight- 

eriod planning horizon). For these reasons, the number of occu- 

ied beds in QFs is low. The transmission rate of the C-19 un- 

er each scenario is depicted in Fig. 7 . We categorize the sce- 

arios into 9 clusters regarding the optimism degree associated 

ith each leaf node (the nodes with no child nodes) (i.e. (1,2,3), 

4,5,6), (7,8,9), (10,11,12), (13,14,15), (16,17,18), (19,20,21), (22,23,24), 

nd (25,26,27)). It is evident that in each cluster, the transmission 

ate increases from left to right due to decreasing the optimism 

egree. 
13 
In this study, the models are solved using GAMS software 

ith the CPLEX solver for district 10 of Teheran. The models are 

olved in reasonable times with 0.00% GAP ( LAM: 42.676 and UAM: 

3.291 s). All the models run for sensitivity analyses have been 

ompleted in less than 5 min with 0.00% GAP. Therefore, using al- 

orithms for solving the models regarding the presented network 

nd collected data is not necessary. However, the model can be 

pplied to larger-scale case studies than district 10 of Teheran, or 

lanning the network may be considered for more time periods. 

n such cases, the number of continuous and binary variables and 

he number of constraints increase. The model presented in this 

tudy is mixed-integer linear programming (MILP), and the num- 

er of binary variables is an important indicator of computational 

omplexity in this model ( Alemany et al., 2018 ; Carrión & Arroyo, 

006 ; Viana & Pedroso, 2013 ; Williams, 2013 ). By increasing the 

etwork size, increasing the number of time periods, or increasing 

oth, the number of binary variables and the problem’s computa- 
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Fig. 8. Objective values versus values of �. 

Fig. 9. Objective values versus values of �. 
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Fig. 10. Objective values versus values of B . 
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ional complexity increase. Therefore, heuristic and metaheuristic 

echniques can be used to overcome computational difficulties. 

.2. Comparative analysis 

The proposed model includes several parameters, and sensitiv- 

ty analysis is conducted on some important parameters to help 

Ms obtain better solutions. The variation of the objective values 

f LAM and UAM for different values of the optimistic-pessimistic 

arameter ( �) is depicted in Fig. 8 . In practice, � is a pessimistic

arameter in minimization problems, and it is considered an op- 

imistic parameter in maximization problems. This study aims to 

inimize the transmission rate, and the increment of � will lead 

o adopting a more pessimistic attitude in the decision-making 

rocess. Therefore, the objective values of LAM and UAM increase 

s the value of � increases. Thus, DMs can select their ideal 

ptimism-pessimism degree in their decisions, which leads to op- 

imal decisions in an uncertain environment. 

The variation of the objective values of LAM and UAM for dif- 

erent confidence levels ( �) is depicted in Fig. 9 . By increasing the

alue of the �, the feasible region shrinks, and consequently, the 

bjective value increases. When the DMs apply more strict atti- 

udes toward chance constraint, they choose a higher confidence 

evel. As the confidence level increases, the feasible region shrinks, 

nd the objective value increases in the minimization problems. In 

he proposed model, as the value of � increases, the number of 

he suspected cases increases, and consequently, the transmission 

ate increases. However, in this problem, by increasing the value 

f the � from 0.8 to 0.9, the objective value decreases. The reason 

s that by solving the model for � = { 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 1 } , the 

ame facilities are established (as shown in Table 1 ), whereas dif- 

erent facilities are established for � = 0 . 8 . In this case, the model 

etermines to establish HF 32 based on the optimal solution. When 

F is opened, the suspected cases should travel longer distances 
32 

14 
o reach HFs compared to when HF 33 is established. Therefore, 

he transmission rate rises further, and consequently, the objective 

alue increases further. 

The variation of the objective values of LAM and UAM for dif- 

erent budget values ( B ) is depicted in Fig. 10 . It is evident that

ervices will be provided for more patients and more efficiently by 

ncreasing the budget. For example, the number of established ca- 

acities may increase, which makes access to health centers easier. 

n this case, the traveled distance becomes shorter, and the trans- 

ission rate decreases. Also, the shorter route may be crowded in 

ome cases and the possibility of virus transmission increases. In 

uch cases, the model will seek the route for transferring patients 

o health centers, in which the possibility of the virus transmission 

s less, even if the route is longer. Accordingly, more transportation 

osts are imposed, and the transmission rate decreases in a prefer- 

ble manner. 

The variation of the objective values of LAM and UAM for differ- 

nt values of N and T is depicted in Fig. 11 . As mentioned before,

 is the average number of transmission events during contact be- 

ween a C-19 patient and other persons, and T is the average du- 

ation of contact between a C-19 patient and another person. Fig. 

1 (a) shows that the transmission rate increases by increasing the 

verage number of transmission events. Regarding Formulation (4), 

 affects the possibility of the transmission ( P ), and the possibility 

ncreases by the increment of N , leading to an increased transmis- 

ion rate. In Fig. 11 (b), it is observed that the transmission rate in-

reases as the average duration of contacts between a susceptible 

ase and other persons increases. Based on Formulations (2) and 

 4 ), T affects the contact rate ( C ) and the possibility of transmis-

ion, and finally, the transmission rate between a C-19 patient and 

 susceptible person increases as T increases; as a result, the total 

ransmission rate increases in the network. In Fig. 11 (c) and (d), 

he effects of simultaneous variations in the values of N and T on 

he objective values are investigated. It is evident that the trans- 

ission rate increases exponentially with a simultaneous increase 

n the value of N and T . Notably, the objective value of UAM is 

ore influenced than the objective value of LAM by increasing N 

nd T . In other words, when the values of N and T are smaller, the

olution interval is smaller. The interval becomes larger as N and 

 increase. Therefore, for higher values of N and T , the DMs’ opin- 

ons significantly affect the obtained results. Fig. 11 (d) investigates 

he effects of the variation in N and T if they vary in the opposite 

irection. It can be said that T has a greater effect on the trans- 

ission rate rather than N . Furthermore, in this chart, the objec- 

ive value for ( N , T ) is greater than the objective value of the other

ombination of N and T (i.e. ( N −40%, T + 40% ), ( N −20%, T + 20% ),

 N + 20%, T − 20% ), and ( N + 40%, T − 40% )). In other words, a de-

rease in one factor ( N or T ) has a greater effect on the transmis-

ion rate rather than an increase in another. 
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Fig. 11. Objective values versus values of N and T . 

Fig. 12. Objective value for UAM versus values of N and T ( ↑ : increase, ↑ : fixed, ↓ : decrease). 
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In Figs. 12 and 13 , the related transmission rates of LAM and 

AM for the different combinations of the values of N and T are 

ompared to determine the optimal policies to be adopted. It is 

vident that when the value of one of these factors ( N and T ) is

xed and the other changes, their effects on the transmission rate 

re approximately the same. Besides, the least impact on the trans- 

er rate is observed when these factors change in opposite direc- 

ions. On the other hand, we have the most impact on the objec- 

ive values when co-directional changes are observed in the value 
15 
f N and T . Notably, an increase in the values of the factors has 

 greater influence than a decrease in their values. For example, 

hen the values of the N and T increase by 40%, the objective 

alue of LAM and UAM are doubled approximately. On the other 

and, if the values of N and T decrease by 40%, the objective val- 

es of LAM and UAM decrease by 60%. Therefore, firstly, it is vital 

o adopt measures to control the virus transmission as much as 

ossible, and after stabilizing the situations, solutions are sought 

o reduce the transmission rate. 
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Fig. 13. Objective value for LAM versus values of N and T ( ↑ : increase, ↑ : fixed, ↓ : decrease). 
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Fig. 14. Objective values versus share of the vaccinated population. 
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Wearing face masks and performing respiratory hygiene and 

and hygiene can reduce transmission events. Other measures such 

s teleworking, physical distancing, and avoiding mass gathering 

an reduce the contact between C-19 cases and susceptible cases. 

lso, isolation of C-19 cases and quarantine of persons who had 

ontacts with C-19 cases can reduce the contact rate. At the be- 

inning of the CVO, restrictions were imposed in most countries; 

s a result, the transmission rate decreased, and the situation was 

tabilized; however, the virus spread was not stopped in most af- 

ected countries. In such circumstances, the restrictions were lifted, 

nd most people returned to work due to the economic conse- 

uences of CVO. Accordingly, the number of transmission events 

ncreases. Now, there are three possibilities regarding people’s be- 

avior against C-19: 1) T will decrease, N will increase, and the 

ransmission rate will remain constant approximately (regarding 

he green graph); 2) one of T and N will remain constant, the 

ther will increase, and the transmission rate will increase (regard- 

ng the pink and blue graphs); 3) T and N will increase, and the 

ransmission rate will increase significantly. Therefore, the trans- 

ission rate will not decrease much, even in the best conditions. 

oreover, according to these graphs, it is concluded that the im- 

act of N and T on the transmission rate are the same. 

The vaccine is another effective tool for controlling infectious 

isease transmission ( Duijzer et al., 2018 ; Lin et al. 2020 ). The

tudies showed that the viral load of the C-19 virus in vaccinated 

atients is approximately one-third of that of unvaccinated pa- 

ients ( Levine-Tiefenbrun et al., 2021 ; Vitiello et al., 2021 ). This 

actor reduces people’s susceptibility to C-19 infection ( S g ) accord- 

ngly. We show the decreased susceptibility to C-19 infection by 

 

′ 
g . Regarding those as mentioned earlier, the share of vaccinated 

nd unvaccinated populations affects the transmission rate. In Fig. 

4 , we investigate the impact of the different shares of vaccinated 

opulations on the transmission rate. To do so, we calculate the 

ew value of S g ( S ′′ g ) for i percent of the vaccinated population as

ollows: 

 

′′ 
g = S g . ( 1 − i ) + S 

′ 
g .i (54) 

As shown in Fig. 14 , the transmission rate decreases signifi- 

antly as the share of the vaccinated population increases. This fig- 

re shows that If people in an unvaccinated area are supposed to 
16 
e fully vaccinated immediately, the transmission rate in that area 

ill be reduced by 50%. Therefore, if proper vaccination policy had 

een adopted and at least a part of the population had been vac- 

inated, we would have witnessed a lower transmission rate. The 

ffect of time is not considered here, and it is assumed that a part 

f the population will be vaccinated immediately. For this reason, 

ith the complete vaccination of the population, the transmission 

ate has not reached zero. However, it is observed that after vacci- 

ation of 80% of the population, the transmission rate reaches rel- 

tive stability. Therefore, it is concluded that at least 80% of people 

eed to be vaccinated to reach a relatively stable immunity against 

-19. 

When COVID-19 patients are transporting, they are under the 

ontrol of healthcare staff and are provided with better protec- 

ion. The better the protection, the less the number of transmis- 

ion events. As a result, different degrees of protection influence 

he possibility of transmission to others, and consequently, the 

ransmission rate of COVID-19. In Fig. 15 , we investigate the im- 

act of different protection degrees on the transmission rate. Bet- 

er protection reduces the number of transmission events ( N ). We 

onsider four protection degrees: when protection is sufficient , in 

hich case the number of transmission events is N , when protec- 

ion is good , in which case the number of transmission events is 
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Fig. 15. Objective values versus protection degrees. 
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educed by 25% (0.75 N ), when protection is great , in which case 

he number of transmission events is reduced by 50% (0.5 N ), and 

hen protection is strong , in which case the number of transmis- 

ion events reduced by 75% (0.25 N ). Notably, this protection is pro- 

ided with healthcare staff, and therefore, this protection does not 

ffect the transmission of the virus when patients move from re- 

ions to SFs ( η
′′ RS 
ei 

). Besides, the rate of transmission by patients 

hom hospitals have rejected is not affected by the different de- 

rees of protection that staff provide to patients ( η
′′ R 
e ). Fig. 15 in- 

icates that as the degree of protection for patients increases, the 

irus transmission rate decreases. Therefore, healthcare staff can 

lso help reduce the transmission rate and contain the outbreak 

y providing better patient protection. 

The people’s susceptibility to the C-19 virus varies based on the 

eople’s age, and consequently, the population’s age structure af- 

ects the transmission rate of the C-19 virus. We categorize the 

usceptible cases into three age groups: children (0–14 years old), 

dults (15–64 years old), older adults (more than 64 years old), 

hich make up 18%, 73%, and 9% of the population of the studied 

ase. The susceptibility of older adults to C-19 cases is higher than 

dults (1.47:1). On the other hand, children are less susceptible to 

he virus than adults (0.34:1). In Fig. 16 , the effect of older pop-

lation size on the transmission rate is investigated. In Fig. 16 (a), 

he population of adults remains constant, and the population size 

f older adults and children varies. It is evident that the transmis- 

ion rate of the C-19 increases as the size of the older population 

ncreases and the size of the child population decreases. 

Similarly, in Fig. 16 (b), the transmission rate increases as the 

umber of older people increases and the number of adults de- 

reases, while the number of children remains constant. The rea- 

on is that older people are more susceptible to the C-19 virus, 

hich increases the probability of the virus transmission based 

n Formulation 1; accordingly, by increasing the number of older 

eople that increases the probability of transmitting the virus, the 

ransmission rate rises. It is concluded that policy-makers should 

ighten restrictions in the area with a large portion of older people 

o prevent further transmission of the C-19 virus. 

The age profile of the population affects the transmission rate of 

he C-19 virus. Besides, the susceptibility of each age group to the 

irus affects the optimal solution of the model. The optimal inter- 

al solution of the proposed model is [0.0011154, 0.00136414]. The 

ptimal solution without considering the population’s age struc- 

ure is [0.0 011293, 0.0 0133021], which is not a reliable solution. 

herefore, taking these issues into account helps DMs to make 

ore reliable decisions during the CVO. In Fig. 17 , the sensitivity 

f the transmission rate to the degree of susceptibility to the C-19 

irus is investigated. In Fig. 17 (a), the impact of the susceptibil- 

ty degree of older people on the transmission rate is investigated. 

n Fig. 17 (b), the effect of the susceptibility degree of the child 
17 
opulation on the objective values is depicted. It is evident that 

he transmission rate increases by increasing the susceptibility de- 

ree. Besides, increasing the value of S older population has a greater 

nfluence on the objective value than increasing the value of the 

 child population . The reason is that the susceptibility of older peo- 

le is much more than the child population (1.47:034), and con- 

equently, and its changes have a more significant impact on the 

bjective value. Notably, in the studied case, the size of the older 

opulation is half the size of the child population; however, the 

mpact of the variation in the value S older population is greater on 

he objective value. Therefore, to obtain more reliable solutions, 

onsidering the population’s age structure in the decision-making 

rocess is of great significance. It can also be said that older people 

re at high risk of C-19 disease, and the adopted policies should 

rotect them against C-19 effectively. 

.3. The robustness of the MFSP approach 

In this section, the robustness of the proposed MFSP approach 

nd the classical MFSP approach are compared. In the classical 

FSP, the probabilities of nodes are deterministic, while the prob- 

bilities in the proposed MFSP are uncertain and are considered 

s fuzzy numbers ( ̃  P n ). The compact form of the proposed MFSP 

odel is considered as follows: 

in z = 

˜ P .x 
ubjectto 

.x ≥ ˜ α
.u + C.x ≤ ξ
 ≥ 0 , u ∈ { 0 , 1 } 

(55) 

here ˜ α and 

˜ P are triangular fuzzy numbers. First, we generate 

he uncertain parameters randomly in their related fuzzy intervals 

nd solve the model regarding the realized random parameters. 

hen, the obtained optimal solution ( x ∗, u ∗) under each realization 

s fixed in the model, and the model is reformulated as follows: 

in z = 

˙ P real . x 
∗ + �. h + �′ . h 

′ 
ubjectto 

. x ∗ + h ≥ αreal 

. u 

∗ + C. x ∗ − h 

′ ≤ ξ
, h 

′ ≥ 0 

(56) 

 and h ′ represent the violations in the constraints, which are pe- 

alized by � and �′ , respectively. Also, ˙ P real is the updated value 

f P real . In Table 2 , the total deviation of the proposed MFSP ap-

roach and the classical MFSP approach are compared. The value 

f the confidence level in both approaches is 0.9. It is evident that 

he proposed MFSP approach avoids constraint violation more than 

he classical approach. Therefore, the proposed approach outper- 

orms the classical MFSP approach in terms of average violations 

nd the standard deviation of violations. Consequently, it can be 

aid that the constraints are less likely to be violated under each 

cenario by applying the MFSP approach. According to the above, 

pplying the proposed MFSP approach to the presented model is 

ustified and valid. 

. Conclusion 

The novelty of the C-19 virus and the uncertainty that per- 

ades the healthcare systems during the CVO highlight the need 

or an efficient response to C-19. Besides, deciding on allocating 

imited available resources becomes more complicated in such cir- 

umstances. In this study, a location-allocation model is proposed 

o obtain an optimized allocation of available resources to C-19 

atients while the transmission rate of the C-19 virus minimizes. 

he susceptibility to C-19 various is an age-dependent factor, and 

ccordingly, different age groups are considered. To calculate the 
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Fig. 16. Objective values versus proportion of older people. 

Fig. 17. Objective values versus degree of susceptibility. 

Table 2 

The total violations of constraints under different realizations. 

No. 

of 

realization 

Classical MFSP Proposed MFSP 

LAM UAM LAM UAM

1 147.83 2001.57 118.45 2000.43 

2 139.92 2009.81 136.63 2013.83 

3 136.85 2057.18 126.46 2003.40 

4 132.31 2001.45 123.51 1973.01 

5 148.33 1984.86 139.08 1946.00 

6 126.50 2062.50 135.01 1992.16 

7 149.77 2023.23 130.13 2001.72 

8 129.64 2032.61 132.60 1950.20 

9 128.93 2009.49 126.25 2009.27 

10 139.13 2033.14 131.05 1999.56 

Average 137.92 2021.58 129.92 1988.96 

Standard deviation 8.60 25.03 6.34 24.17 

r
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n

a

a

n

m

o

v  

N

c

a

i

(

(

ate of the C-19 transmission from a C-19 patient to a suscep- 

ible case of a specific age group, a function is developed based 

n the contact rate, the degree of susceptibility to the C-19 as- 

ociated with the age group, the probability of disease transmis- 

ion, and the portion of infected cases. Furthermore, to improve 

he utilization of limited resources, C-19 patients are categorized 

nto different groups according to their disease severity and are as- 

igned to appropriate HFs to receive medical care tailored to their 

eeds. 

Some data are tainted with uncertainty in the proposed model, 

nd the MFSP approach is used to cope with uncertainty. In this 

pproach, the probability of nodes of the scenario tree and the 

umber of suspected cases are treated as fuzzy variables. The Me 

easure is used to cope with chance constraints and the fuzzy 

bjective. By applying this approach, the proposed model is con- 

erted into two models, LAM and UAM , which are based on Pos and

ec measures, respectively. Finally, the model is applied to the real 

ase, district 10 of Tehran; the results are provided, and sensitivity 
18 
nalyses are carried out, which lead to the following managerial 

nsights: 

1) An interval solution is provided for DMs by applying the pro- 

posed MFSP approach, which supplies them with more infor- 

mation. DMs can also incorporate their attitudes into decision- 

making, which leads to optimal decisions in a fuzzy environ- 

ment. 

2) The number of transmission events per contact ( N ) and the av- 

erage duration of the contact ( T ) are important factors that af- 

fect the transmission rate of the C-19. If the preventive mea- 

sure is taken in such a way that can decrease the values of N 

and T , the transmission rate decreases significantly. However, if 

the measures can reduce the value of one of these factors and 

cannot affect the value of the other, a smaller impact on the 

transmission rate is observed. Besides, if the values of N and T 

change in the opposite direction, the transmission rate remains 

almost constant. 
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3) The vaccine is another effective tool for controlling CVO, and 

adopting appropriate policies to vaccinate people as soon as 

possible is very effective in reducing the spread of C-19. Be- 

sides, vaccinating at least 80% of the population provides rela- 

tively stable immunity against C-19. 

4) The population’s age structure affects the transmission rate of 

C-19, and the older population has a greater influence on the 

transmission rate. Thus, preventive measures should be taken 

in such a way that they protect older people against C-19 effi- 

ciently and fairly. 

5) By assigning patients to centers providing the services tailored 

to their needs, the limited resources will be allocated equitably, 

and the capacity shortage is avoided as much as possible. 

As further extensions of this study, the effect of different pre- 

entive measures on the transmission rate can be considered. 

urthermore, considering the asymptomatically infected cases can 

ake the model more reliable. The uncertainty in the death rate 

nd discharge rate can be taken into account. After assigning dif- 

erent types of C-19 patients to different types of HFs, the pa- 

ients need different types of medical care according to their dis- 

ase severity; consequently, the resource allocation within HFs can 

e incorporated into the model. Moreover, the concept of robust- 

ess can be incorporated into the model to improve its perfor- 

ance. Regarding the different viral loads of vaccinated and un- 

accinated patients, we can categorize the infected cases into two 

roups (vaccinated C-19 patients and unvaccinated C-19 patients), 

hich leads to a more accurate transmission rate. (Eqs. ( 3 ), ( 7 ),

 40–50 ), ( 52–56 ) ( Table B1 ) 
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